首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48754篇
  免费   4291篇
  国内免费   5063篇
  2024年   65篇
  2023年   907篇
  2022年   1034篇
  2021年   1514篇
  2020年   1599篇
  2019年   2215篇
  2018年   1857篇
  2017年   1605篇
  2016年   1709篇
  2015年   1961篇
  2014年   2878篇
  2013年   3529篇
  2012年   2125篇
  2011年   2739篇
  2010年   2131篇
  2009年   2575篇
  2008年   2642篇
  2007年   2750篇
  2006年   2490篇
  2005年   2262篇
  2004年   1966篇
  2003年   1706篇
  2002年   1589篇
  2001年   1152篇
  2000年   1036篇
  1999年   995篇
  1998年   861篇
  1997年   743篇
  1996年   708篇
  1995年   776篇
  1994年   699篇
  1993年   561篇
  1992年   528篇
  1991年   503篇
  1990年   405篇
  1989年   360篇
  1988年   336篇
  1987年   299篇
  1986年   227篇
  1985年   296篇
  1984年   355篇
  1983年   256篇
  1982年   298篇
  1981年   173篇
  1980年   167篇
  1979年   152篇
  1978年   121篇
  1977年   64篇
  1976年   53篇
  1974年   36篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
3.
Biotherapeutic proteins represent a mainstay of treatment for a multitude of conditions, for example, autoimmune disorders, hematologic disorders, hormonal dysregulation, cancers, infectious diseases and genetic disorders. The technologies behind their production have changed substantially since biotherapeutic proteins were first approved in the 1980s. Although most biotherapeutic proteins developed to date have been produced using the mammalian Chinese hamster ovary and murine myeloma (NS0, Sp2/0) cell lines, there has been a recent shift toward the use of human cell lines. One of the most important advantages of using human cell lines for protein production is the greater likelihood that the resulting recombinant protein will bear post-translational modifications (PTMs) that are consistent with those seen on endogenous human proteins. Although other mammalian cell lines can produce PTMs similar to human cells, they also produce non-human PTMs, such as galactose-α1,3-galactose and N-glycolylneuraminic acid, which are potentially immunogenic. In addition, human cell lines are grown easily in a serum-free suspension culture, reproduce rapidly and have efficient protein production. A possible disadvantage of using human cell lines is the potential for human-specific viral contamination, although this risk can be mitigated with multiple viral inactivation or clearance steps. In addition, while human cell lines are currently widely used for biopharmaceutical research, vaccine production and production of some licensed protein therapeutics, there is a relative paucity of clinical experience with human cell lines because they have only recently begun to be used for the manufacture of proteins (compared with other types of cell lines). With additional research investment, human cell lines may be further optimized for routine commercial production of a broader range of biotherapeutic proteins.  相似文献   
4.
Upon tumour necrosis factor alpha (TNFα) stimulation, cells respond actively by way of cell survival, apoptosis or programmed necrosis. The receptor‐interacting proteins 1 (RIP1) and 3 (RIP3) are responsible for TNFα‐mediated programmed necrosis. To delineate the differential contributions of RIP3 and RIP1 to programmed necrosis, L929 cells were stimulated with TNFα, carbobenzoxy‐valyl‐alanyl‐aspartyl‐[O‐methyl]‐fluoromethylketone (zVAD) or zVAD along with TNFα following RNA interference against RIP1 and RIP3, respectively. RIP1 silencing did not protect cells from TNFα‐mediated cell death, while RIP3 down‐regulation made them refractory to TNFα. The heat shock protein 90 inhibitor geldanamycin (GA) down‐regulated both RIP1 and RIP3 expression, which rendered cells resistant to zVAD/TNFα‐mediated cell death but not to TNFα‐mediated cell death alone. Therefore, the protective effect of GA on zVAD/TNFα‐stimulated necrosis might be attributed to RIP3, not RIP1, down‐regulation. Pretreatment of L929 cells with rapamycin mitigated zVAD‐mediated cell death, while the autophagy inhibitor chloroquine did not affect necrotic cell death. Meanwhile, necrotic cell death by zVAD and TNFα was caused by reactive oxygen species generation and effectively diminished by lipid‐soluble butylated hydroxyanisole. Taken together, the results indicate that RIP1 and RIP3 can independently mediate death signals being transduced by two different death stimuli, zVAD and TNFα. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
A new genetic polymorphism of an unidentified plasma protein (PLP1) in pigs was described by using a method of two-dimensional gel electrophoresis and protein staining. Two codominant alleles, with frequencies of 0.83 and 0.17, were found in the Swedish Yorkshire breed. The PLP1 marker was typed in a three-generation pedigree and tested for linkage against a set of 128 markers. The PLP1 locus showed significant LOD score values with three different microsatellite markers (S0092, DAGK and S005), previously assigned to chromosome 5.  相似文献   
6.
This study was designed to test the biome dependency hypothesis, which predicts that similar assemblages of macroinvertebrates occur along rivers both within and among drainage basins if the basins occupy the same biome. Benthic macroinvertebrates were collected from three drainage basins within each of three biomes in Canada, the eastern deciduous forests (EDF) of southwestern Ontario, the grasslands of south-central Alberta, and the montane coniferous forests (MCF) of southeastern British Columbia. A total of 225 benthic samples (3 biomes × 3 rivers/biome × 5 sites/river × 5 samples/site) was collected in spring using a cylinder sampler.The significant interaction effect between biome and a site's location along a river indicated that spatial patterns of variation in total density and taxonomic composition were not spatially consistent among sites along rivers or among biomes. Total macroinvertebrate densities were equivalent between the EDF and grassland sites. However, total density was substantially lower at the MCF sites than at sites in the other two biomes. The greatest differences in taxonomic composition occurred among biomes, although significant differences also occurred for all other sources of variation examined. Macroinvertebrate composition was more strongly associated with local, site-specific factors (riparian vegetation and land use) than with longitudinal gradients. Distinct site-specific taxonomic assemblages were evident in EDF, but not in the other two biomes where land use was more homogeneous.  相似文献   
7.
Faster running is not performed with proportional increase in all joint torque/work exertions. Although previous studies have investigated lumbopelvic kinetics for a single velocity, it is unclear whether each lumbopelvic torque should increase for faster running. We examined the relationship between running velocity and lumbopelvic kinetics. We calculated the three-dimensional lumbosacral kinetics of 10 male sprinters during steady-state running on a temporary indoor running track at five target velocities: 3.0 (3.20 ± 0.16), 4.5 (4.38 ± 0.18), 6.0 (5.69 ± 0.47), 7.5 (7.30 ± 0.41), and maximal sprinting (9.27 ± 0.36 m/s). The lumbosacral axial rotation torque increased more markedly (from 0.37 ± 0.06 to 1.99 ± 0.46 Nm/kg) than the extension and lateral flexion torques. The increase in the axial rotation torque was larger above 7.30 m/s. Conversely, the extension and lateral flexion torques plateaued when running velocity increased above 7.30 m/s. Similar results were observed for mechanical work. The results indicate that faster running required larger lumbosacral axial rotation torque. Conversely, the extension and lateral flexion torques were relatively invariant to running velocity above 7 m/s, implying that faster running below 7 m/s might increase the biomechanical loads causing excessive pelvic posterior tilt and excessive pelvic drop which has the potential to cause pain/injury related to lumbopelvic extensors and lateral flexors, whereas these biomechanical loads might not relate with running velocity above 7 m/s.  相似文献   
8.
《Chirality》2017,29(5):159-166
Here we review our three recently developed analytical models describing the intraband optical activity of semiconductor nanocrystals, which is induced by screw dislocations, ionic impurities, or irregularities of the nanocrystal surface. The models predict that semiconductor nanocrystals can exhibit strong optical activity upon intraband transitions and have large dissymmetry of magnetic‐dipole absorption. The developed models can be used to interpret experimental circular dichroism spectra of nanocrystals and to advance the existing techniques of enantioseparation, biosensing, and chiral chemistry.  相似文献   
9.
Tumor necrosis factor alpha (TNF‐α) is a pro‐inflammatory cytokine with a role in activating adaptive immunity to viral infections. By inhibiting the capacity of plasmacytoid dendritic cells to produce interferon‐α and TNF‐α, porcine circovirus 2 (PCV2) limits the maturation of myeloid dendritic cells and impairs their ability to recognize viral and bacterial antigens. Previously, we reported QTL for viremia and immune response in PCV2‐infected pigs. In this study, we analyzed phenotypic and genetic relationships between TNF‐α protein levels, a potential indicator of predisposition to PCV2 co‐infection, and PCV2 susceptibility. Following experimental challenge with PCV2b, TNF‐α reached the peak at 21 days post‐infection (dpi), at which time a difference was observed between pigs that expressed extreme variation in viremia and growth (< 0.10). A genome‐wide association study (= 297) revealed that genotypes of 56 433 SNPs explained 73.9% of the variation in TNF‐α at 21 dpi. Major SNPs were identified on SSC8, SSC10 and SSC14. Haplotypes based on SNPs from a SSC8 (9 Mb) 1‐Mb window were associated with variation in TNF‐α (< 0.02), IgG (= 0.05) and IgM (< 0.13) levels at 21 dpi. Potential overlap of regulatory mechanisms was supported by the correlations between genomic prediction values of TNF‐α and PCV2 antibodies (21 dpi, > 0.22), viremia (14–21 dpi, > 0.29) and viral load (= 0.31, < 0.0001). Characterization of the QTL regions uncovered genes that could influence variation in TNF‐α levels as well as T‐ and B‐cell development, which can affect disease susceptibility.  相似文献   
10.
After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号